

GCE

Chemistry A

Advanced Subsidiary GCE

Unit F321: Atoms, Bonds and Groups

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

C	uestion	Answer	Mark	Guidance
1	(a)	Rb-87 has (two) more neutrons ✓	1	ALLOW Different numbers of neutrons ALLOW 2 neutrons ALLOW Rb-85 has 48 neutrons AND Rb-87 has 50 neutrons IGNORE correct references to protons and electrons DO NOT ALLOW incorrect references to protons and electrons
	(b)	The (weighted) mean mass of an atom (of an element) OR The (weighted) average mass of an atom (of an element) ✓ compared with 1/12th (the mass) ✓ of (one atom of) carbon-12 ✓	3	ALLOW average atomic mass DO NOT ALLOW mean mass of an element ALLOW mean mass of isotopes OR average mass of isotopes DO NOT ALLOW the singular; 'isotope' For second AND third marking points ALLOW compared with (the mass of) carbon-12 which is 12 ALLOW mass of one mole of atoms ✓ compared to 1/12th ✓ (mass of) one mole OR 12 g of carbon-12 ✓ ALLOW mass of one mole of atoms 1/12th mass of one mole OR 12g of carbon-12
	(c)	$\frac{(85.00 \times 72.15) + (87.00 \times 27.85)}{100} =$ $\mathbf{OR} \ 61.3275 + 24.2295$ $\mathbf{OR} \ 85.557 \checkmark$ $A_{r} = 85.56 \ (\text{to 2 decimal places}) \checkmark$	2	 ALLOW two marks for correct answer A_r = 85.56 (with no working) ALLOW one mark for ECF from seen incorrect sum provided final answer is between 85 and 87 and is to 2 decimal places, e.g. 85.567 gives ECF of 85.57 for one mark

Que	stion	Answer	Mark	Guidance	
1 (d))	Spherical OR sphere ✓	1	DO NOT ALLOW 'circular'	
				IGNORE unlabelled 2-D diagrams	
(e)	(i)	$Sr^+(g) \rightarrow Sr^{2+}(g) + e^- \checkmark$	1	ALLOW e for electrons	
				ALLOW $Sr^+(g) - e^- \rightarrow Sr^{2+}(g)$	
				DO NOT ALLOW $Sr^+(g) + e^- \rightarrow Sr^{2+}(g) + 2e^-$	
				IGNORE state symbols for electrons	
(e)	(ii)		3	Use annotations with ticks, crosses ECF etc. for this part	
		Sr has one more proton OR greater nuclear charge ✓		Comparison should be used for each mark	
				ALLOW Sr has more protons ALLOW 'across the period' for 'Sr'	
				IGNORE 'atomic number increases', but ALLOW 'proton number' increases	
				IGNORE 'nucleus gets bigger'	
				'Charge increases' is insufficient	
				ALLOW 'effective nuclear charge increases' OR 'shielded	
				nuclear charge increases'	
				Quality of Written Communication – Nuclear OR proton(s)	
				OR nucleus spelled correctly ONCE for the first marking point	
		(Outerment) electrons are in the same shall		ALLOW shielding is similar	
		(Outermost) electrons are in the same shell OR (outermost) electrons experience same shielding		ALLOW screening for shielding	
		OR Atomic radius of Sr is smaller ✓		IGNORE sub-shells	
		OR Atomic radius of St is smaller		DO NOT ALLOW 'distance is similar'	
		Sr has greater nuclear attraction (on outer electrons /		ALLOW 'greater nuclear pull' for 'greater nuclear attraction'	
		outer shell/s) OR the (outer) electrons are attracted more strongly (to		DO NOT ALLOW 'nuclear charge' for nuclear attraction ORA throughout	
		the nucleus) ✓			

C	uest	ion	Answer		Guidance	
1	(e)	(iii)	2nd IE of Rb involves removing electron from shell closer to nucleus ✓ Stronger nuclear attraction on (outermost electron) of Rb OR (outermost electron) of Rb experiences less shielding ✓	Mark 2	IGNORE new shell ALLOW There is one shell fewer in Rb(*) (than Sr*) ALLOW Rb(*) has a smaller radius (than Sr*) ALLOW Rb(*) loses an electron from the 4th shell AND Sr(*) loses an electron from the 5th shell. ALLOW responses which do not specifically say 'nuclear' attraction (e.g. Rb has greater attraction) as long as nucleus is seen in first point A comparison of Rb to Sr must be used, e.g. 'Because of shielding' is not enough ORA	
			Total	13		

PMT

Ques	stion	Answer	Mark	Guidance
2 (a)	(i)	mol of $H_xA = 25.00 \times 0.0500 = 1.25 \times 10^{-3}$ OR 0.00125 mol \checkmark	1	ALLOW 0.0013 OR 1.3 × 10 ⁻³
		1000		ALLOW correct answer only without working
	(ii)	mol of NaOH =	1	ALLOW correct answer without working
		$\frac{12.50 \times 0.200}{1000} = 2.5(0) \times 10^{-3} \mathbf{OR} 0.0025(0) \text{mol } \checkmark$		
	(iii)	Answer 2a(ii) rounded to nearest whole number ✓ Answer 2a(i)	1	ALLOW answer without working if answers to 2a(i) AND 2a(ii) are seen
		If 2a(i) and 2a(ii) are correct this will be $x = \frac{2.50 \times 10^{-3} \text{ mol}}{1.25 \times 10^{-3} \text{ mol}} = 2$		DO NOT ALLOW responses without seeing answers in 2a(i) AND 2a(ii)
		OR H ₂ A		
(b)	(i)	$HNO_3 \checkmark$ $CuO + 2HNO_3 \rightarrow Cu(NO_3)_2 + H_2O \checkmark$	2	IGNORE state symbols ALLOW correct multiples
	(ii)	(Electrostatic) attraction between oppositely charged ions ✓	1	Attraction is essential IGNORE references to metal and non-metal
	(iii)	lons are mobile OR ions can move ✓	1	IGNORE 'free ions' IGNORE 'delocalised ions' IGNORE ions can move when molten IGNORE charge carriers DO NOT ALLOW Any mention of electrons moving ALLOW ions move when in a liquid IGNORE responses which give liquid ions
	(iv)	(+) 5 ✓	1	ALLOW V

F321	Mark Scheme	January 20	11

C	Question		Answer	Mark	Guidance
2	(c)		Cu(NO ₃) ₂ •6H ₂ O ✓	1	ALLOW Cu(NO ₃) ₂ 6H ₂ O ALLOW Cu(NO ₃) ₂ (H ₂ O) ₆ ALLOW Cu(NO ₃) ₂ .6H ₂ O DO NOT ALLOW CuN ₂ O ₆ •6H ₂ O
			Tot	al 9	

C	Quest	ion	Answer	Mark	Guidance	
3	(a)		The ability of an atom to attract electrons ✓	2	ALLOW 'attraction of an atom for electrons' ALLOW 'pull' for 'attract' DO NOT ALLOW 'element' for 'atom'	
			in a covalent bond ✓		ALLOW 'shared pair' or 'bond(ing) pair' for 'covalent bond'	
	(b)		$\delta^{+}N-F\delta^{-}$ AND $\delta^{-}N-Br\delta^{+}$ \checkmark	1	ALLOW d+ / d- DO NOT ALLOW + / –	
	(c)	(i)	octahedral OR octahedron ✓	1		
		(ii)	Diagram of BF ₃ showing three 'dot-and-cross' bonds between B and F and all F atoms with complete octet of electrons \checkmark Diagram of NH ₃ showing three 'dot-and-cross' bonds between N and H and N atom has a lone pair \checkmark Marking points 3, 4 and 5 may be awarded independently	5	Use annotations with ticks, crosses ECF etc. for this part ALLOW diagrams without circles Must be 'dot-and-cross'	
			electron pairs repel ✓		IGNORE 'electrons repel' DO NOT ALLOW 'atoms repel' ALLOW 'bonds repel'	
			NH₃ has one lone pair and three bonding pairs of electrons AND lone pair of electrons repels more than bonding pairs ✓		ALLOW 'bonds' for 'bonding pairs' ALLOW 'four pairs' in place of 'one lone pair and three bonding pairs'	
			BF₃ has three (bonding) pairs of electrons (which repel equally) ✓		The third marking point can be gained from statements seen in fourth or fifth marking points	

(Question		Answer	Mark	Guidance
3	(c)	(iii)	BF₃ is symmetrical ✓ The dipoles cancel out ✓	2	IGNORE 'polar bonds cancel' IGNORE 'charges cancel'
			Total	11	

PMT

Question	Answer	Mark	Guidance	
4 (a)	Used to neutralise acidic soils ✓	2	ALLOW raises the pH of the soil IGNORE references to fertilisers	
	Excess will result in soils becoming too alkaline (to sustain crop growth) ✓		ALLOW pH becomes too high IGNORE 'harmful' IGNORE 'corrosive'	
(b) (i)	$0.00131 \times 40.1 = 0.0525 \text{ g } \mathbf{OR} \ 5.25 \times 10^{-2} \checkmark$	1	ALLOW 0.053 OR 0.05253 OR 0.052531 g IGNORE 0.05 if correct answer seen in working DO NOT ALLOW 0.052 OR 0.0524	
(ii)	$0.00131 \times 24.0 = 0.0314 \text{ dm}^3$ OR $3.14 \times 10^{-2} \checkmark$	1	ALLOW 0.031 OR 0.03144 dm ³ IGNORE 0.03 if correct answer seen in working DO NOT ALLOW 31.4	
(iii)	Mol of OH ⁻ ions = $0.00131 \times 2 = 0.00262$ OR 2.62×10^{-3}	2	ALLOW 0.0026	
	Mol of OH ⁻ ions in 1 dm ³ = $0.00262 \times 1000 = 0.0105$ mol dm ⁻³ 250		ALLOW 0.01048 OR 0.01(0) ALLOW ECF from incorrect mol of OH ⁻ DO NOT ALLOW 2nd mark as ECF if 0.0525 is used as no of mol of OH ⁻ ions DO NOT ALLOW 2nd mark as ECF if 0.0314 is used as no of mol of OH ⁻ ions 0.00524 mol dm ⁻³ is a likely ECF as a result of not multiplying 0.00131 by 2, but 0.00131 must be seen in working	
(c) (i)	Fewer moles of Ba (in 0.0525 g) OR Fewer atoms of Ba (in 0.0525) ✓	1	ORA Assume candidate is referring to Ba if not stated IGNORE A_r Ba > A_r Ca	
(ii)	Idea of Ba having a quicker rate OR more vigorous reaction ✓	1	ALLOW more exothermic OR gets hotter OR fizzes more Assume candidate is referring to Ba if not stated Comparison is essential IGNORE 'Ba more reactive' ORA	
	Total	8		

PMT

Q	Quest	ion	Answer	Mark	Guidance
5	(a)	(i)	Creating the dipole mark uneven distribution of electrons ✓	3	Use annotations with ticks, crosses ECF etc. for this part ALLOW movement of electrons ALLOW changing electron density
			Type of dipole mark creates an instantaneous dipole OR temporary dipole ✓		ALLOW 'transient', 'oscillating', 'momentary', 'changing'
			Induction of a second dipole mark causes induced dipole(s) in neighbouring molecules ✓		ALLOW 'induces a dipole in neighbouring molecules' ALLOW 'causes a resultant dipole in neighbouring molecules' ALLOW 'atoms' for 'molecules'
		(ii)	boiling points increase down the group ✓	3	Use annotations with ticks, crosses ECF etc. for this part ALLOW Bpt of iodine is highest OR Bpt of chlorine is lowest ALLOW CI for chlorine etc. For 'down the group' ALLOW 'as molecules get bigger'
			greater number of electrons OR stronger intermolecular forces OR stronger van der Waals' forces ✓		ALLOW number of electron shells increases IGNORE 'more shells' (if no reference to electrons) ALLOW 'more' for 'stronger' ALLOW iodine has most electrons ALLOW chlorine has fewest electrons
			more energy needed to break intermolecular OR van der Waals' forces ✓		DO NOT ALLOW any implication that the attraction is between atoms not molecules for third mark
	(b)		Same number of outer(most) electrons OR same outer(most) electron structure ✓	1	ALLOW same number of electrons in outer shell ALLOW It has seven outer electrons IGNORE same group DO NOT ALLOW 'same number of electrons'

C	uest	ion	Answer	Mark	Guidance
5	(c)	(i)		6	Use annotations with ticks, crosses ECF etc. for this part
			Colours: (Add Br₂ to NaCl,) (Cyclohexane layer) turns orange OR yellow ✓ (Add Br₂ to Nal,) (Cyclohexane layer) turns purple		ALLOW any combination of these but no others ALLOW any combination of these but no others
			OR lilac OR violet OR pink OR mauve ✓		DO NOT ALLOW 'precipitate' with either colour
			Equation: $Br_2 + 2l^- \rightarrow l_2 + 2Br^- \checkmark$		DO NOT ALLOW equation mark if incorrect equation(s) also seen IGNORE Br₂ + 2Cl⁻ → Br₂ + 2Cl⁻ IGNORE correct non-ionic version of equation IGNORE state symbols
			Reactivity: Reactivity decreases down the group OR Oxidising power decreases down the group ✓ Explanations: Chlorine will gain electron easiest OR form negative ion easiest ✓		ALLOW Chlorine is the most reactive ALLOW Cl for chlorine etc. ALLOW lodine is the least reactive ALLOW chlorine is best at electron capture ALLOW chlorine has 'greatest' electron affinity IGNORE chlorine is most electronegative DO NOT ALLOW explanations in terms of displacement Quality of Written Communication – Electron(s) OR negative spelled correctly at least ONCE for marking point 5
			Because chlorine (atom) is smallest OR Outer(most) shell of chlorine least shielded OR Nuclear attraction on electrons of chlorine is greatest ✓		ALLOW Chlorine atom has fewest shells ALLOW outer(most) shell closest to the nucleus ALLOW Chlorine atom has lowest shielding ORA for marking points 4, 5 and 6

C	uest	ion	Answer	Mark	Guidance
5	(c)	(ii)	Bromine is toxic ✓	1	ALLOW cyclohexane is toxic ALLOW bromine irritates the lungs DO NOT ALLOW Cl ₂ is toxic IGNORE 'strong smelling' IGNORE 'halogens' are toxic
	(d)	(i)	$2F_2 + 2H_2O \rightarrow 4HF + O_2 \checkmark$	1	ALLOW correct multiples, including use of ½ O ₂ ALLOW 4FH IGNORE state symbols
		(ii)	Oxygen has been oxidised as (oxidation number has increased from) $O = -2$ to $O = 0$ \checkmark Fluorine has been reduced as (oxidation number has decreased from) $F = 0$ to $F = -1$ \checkmark	2	IGNORE references to oxygen in any incorrect products DO NOT ALLOW O₂ = -2 → O = 0 but ALLOW F₂ = 0 → F = -1 ALLOW 'F is reduced from 0 to -1' regardless of product (or no product) in 5d(i) except ALLOW ECF for F = -2 if H₂F is seen ALLOW one mark for O = -2 and O₂ = 0 AND F₂ = 0 and F = -1 if no reference OR incorrect reference to oxidation / reduction is seen Look at equation in 5d(i) for oxidation numbers if not seen in 5d(ii) IGNORE reference to electron loss / gain if correct DO NOT ALLOW incorrect reference to electron loss / gain
	(e)	(i)	$(1s^2) 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^1 \checkmark$	1	IGNORE 1s ² twice ALLOW 4s ² before 3d ¹⁰ ALLOW '3D'
		(ii)	GaF₃ ✓	1	
			Total	19	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

